
Welcome to RetroForth

Hello, and welcome to the RetroForth Handbook. This book will hopefully help you learn to use

RetroForth and answer most (if not all) of your questions.

What Is RetroForth?

There are plenty of full-featured Forth compilers, e.g. IsForth, BigForth, Win32forth,

Gforth, and the commercial Forths.

RetroForth [since version 3] is modeled after cmForth, Colorforth, Eforth and Pygmy. It

uses some, but not all, of Chuck Moore's newer ideas. It's clean, elegant, and tiny - only

about 20k source/10k binary for Linux. It may not have many features, and it may not be

particularly useful by itself, but it's easy to grasp, easily adapted to various uses - even

on other CPU architectures. I think that's our niche.  --Tom Novelli

RetroForth is an implementation of Forth for Linux, Windows, FreeBSD, BeOS, and other OSes

for the x86 CPU line. It can also be used as an operating system.

The design and implementation have been worked on continually over seven years. The current

version represents the result of this effort, and we feel that RetroForth provides a clean, solid

language for writing truly useful software.



Getting Started

You can always get the latest version of RetroForth from http://www.retroforth.org. At the time

of this writing, the latest version is 8.0.

There are different downloads for each port. You can choose between two archive formats:

.tar.gz or .zip. If you’re using Windows, we recommend getting the .zip form. Users of other

OSes should get the .tar.gz format since it preserves file permissions properly.

Once you download a copy, decompress it, and enter the newly created retro8 directory. For

most ports there will be three or four subdirectories. The bin subdirectory contains the

executable copy of RetroForth. On most systems it will contain one file named rf (or rf.exe for

Windows users).The next directory will be named lib. This contains the code library. The library

is not included in the Native or L4 ports. In the source directory the full source code is provided.

Finally you may have a doc directory containing a copy of this handbook or other

documentation.

On most systems you simply need to run the rf or rf.exe file in bin to run RetroForth. On a few

systems you will need to rebuild it yourself. Setup for Native and L4 users is a more involved

process. We will take a look at that in the Ports section of this handbook.

Unless you're using one of the generic ports, you don't need to bother rebuilding unless

you make changes to the source tree. Your binary won't be any better matched for your

OS since we don't use any libraries, except in the generic and generic+ffi ports.



Source Tree

There are many files in the source tree, but it's pretty easy to find what you need due to careful

organization:

core.asm Port-independent code

core.dict Port-independent dictionary declarations

macros.fasm Macros used in the Forth Core

rf.asm Port-specific code

raw.asm For RetroForth/Native only.

blocks/base The core wordset for RetroForth.

blocks/blockio RetroForth 8-style block I/O.

blocks/classic-ui Classic Forth "OK"-style prompt.

blocks/colors Colors for use with output.

blocks/portio For Native and L4 only.

blocks/red* The block editor.

You might see a core.f file in your distribution. This is auto-generated by the build process,

given the contents of the blocks/ directory as input.



Terminology

RetroForth is not a conventional forth, so some of the terminology used may be different than

you're used to. Here are some of the words that we often use in discussions.  

Heap This is where compiled code and data are placed. Strings are also allocated from the

heap. h0 is a variable pointing to the heap; here is a word returning the current top of the heap.

Dictionary This is where the headers for compiled words go. Note that the compiled code is not

placed here. You can use the word last to obtain a pointer to the most recent dictionary entry.

Block Buffer When you load a blockfile into memory, this is where it's placed. The word offset

gives you a pointer to the start of the first block.

TIB Text Input Buffer. When you type code at the console, it's placed here while being

interpreted. The word tib returns the address of the TIB. >in is a pointer into the TIB.

RED The RetroEditor, it's included in every copy of RetroForth.

FFI Foreign Function Interface. This is used to load and invoke external libraries.



The Glossary

RetroForth has many words that you can use in your programs. Many of them will be familiar to

those who already know another Forth, but some will be quite new. This section attempts to

provide a relatively up-to-date overview of all the words.

Please be aware that a current copy of the glossary is provided with all releases of RetroForth 8.

Since releases occur more rapidly than updates to the Handbook, you should review the

glossary.txt file for the most accurate list of words and their uses.

Each entry has a format like:

wordname

A brief description of the word

Takes:

Returns:

Some optional notes about the word



Core Words

--------------------------------------------------------------

forth   macro

 

Use:     Switch the active dictionary for compilation

Take:    --

Return:  --

Notes:

--------------------------------------------------------------

find   mfind

Use:     Find a word in either the forth (find) or macro

         (mfind) dictionaries.

Take:    a #

Return:  xt  (if found)

         a # (if not found)

Notes:   Returns TRUE if found, FALSE if not found.

--------------------------------------------------------------

>number

 

Use:      Convert a string to an integer on the stack

Takes:    a #

Returns:  n    (if a valid number in the current base)

          a #  (if not a valid number in this base)

Notes:    Returns TRUE if the conversion worked; FALSE if it

          failed.

--------------------------------------------------------------

interpret

 

Use:     Process input from the TIB

Take:    --

Return:  --  (results of evaluation)

Notes:   'eval' also uses this internally

--------------------------------------------------------------

eval

 

Use:     Evaluate a string

Take:    a #

Return:  -- (the results of the evaluation are left on the

             stack)

Notes:

--------------------------------------------------------------



--------------------------------------------------------------

1,   2,   3,   ,

Use:     Inline 1, 2, 3, or 4 bytes to HERE

Take:    n

Return:  --

Notes:

--------------------------------------------------------------

entry

Use:     Create a new dictionary entry from a string

Take:    a #

Return:  --

Notes:   This does not define a body for the entry, it just

         creates an entry pointed to HERE

--------------------------------------------------------------

]

 

Use:     The compiler

Take:    --

Return:  --

Notes:   This is where the compilation of a word actually

         takes place

--------------------------------------------------------------

compile

 

Use:     Compile a CALL to a word

Take:    a

Return:  --

Notes:   The CALL is relative, not absolute

--------------------------------------------------------------

[

 

Use:     Stop a compile, drop back to the interpreter

Take:    --

Return:  --

Notes:   Does not terminate the definition, use ; for that.

--------------------------------------------------------------

;;

Use:     compile an exit to a definition

Take:    --

Return:  --

Notes:   If the last thing compiled was a call, change to a

         jmp. Otherwise just compiles in a ret.

--------------------------------------------------------------



--------------------------------------------------------------

;

 

Use:     End a definition

Take:    --

Return:  --

Notes:   Calls ;; and then jumps to [

--------------------------------------------------------------

:

Use:     Main compiler wrapper

Take:    --

Return:  --

Notes:   Creates an entry (saving the old state of HERE and

         LAST), then jumps to ]

--------------------------------------------------------------

literal

 

Use:     Compiles a literal into a definition

Take:    n

Return:  --

Notes:   

--------------------------------------------------------------

#

Use:     Display the unsigned value of the TOS

Take:    n

Return:  --

Notes:   . and u. are written around this. # does not leave a

         trailing space.

--------------------------------------------------------------

parse

 

Use:     Parse input stream

Take:    <char>

Return:  a #

Notes:   Parses TIB until it encounters <char> or the end of a

         line.

--------------------------------------------------------------

reset

 

Use:     Reset the stack to the default starting point

Take:    --

Return:  --

Notes:   Also replaces all values on the stack with 0's

--------------------------------------------------------------



--------------------------------------------------------------

create

Use:     create a variable

Take:    --

Return:  --

Notes:   parses the input stream for the name

--------------------------------------------------------------

does>

 

Use:     Modify the runtime behavor of a 'create'd word

Take:    --

Return:  addr

Notes:   changes 'call dovar' to 'call <code after does>'

         Adds some code to push the address of the data part

         to the stack. 

--------------------------------------------------------------

last

 

Use:     Returns the address of the last dictionary entry

Take:    --

Return:  addr

Notes:

--------------------------------------------------------------

there

 

Use:     Returns the address of the block buffer

Take:    --

Return:  addr

Notes:

--------------------------------------------------------------

tib

 

Use:     Push the address of the TIB

Take:    --

Return:  addr

Notes:

--------------------------------------------------------------

CORE Variables

--------------------------------------------------------------

h0       Pointer to HERE

base     The current numeric base

>in      Pointer to the current location in the input stream

word?    Pointer to a word that handles errors when words

         aren't found

--------------------------------------------------------------



--------------------------------------------------------------

Macros

--------------------------------------------------------------

1+   1-

Use:     Increment (1+) or Decrement (1-) the TOS.

Take:    n

Return:  n+1

Notes:   Inlines to "inc eax" or "dec eax"

--------------------------------------------------------------

swap

Use:     swap the top two items on the stack

Take:    x y

Return:  y x

Notes:   inlined to "xchg eax, [esi]"

--------------------------------------------------------------

drop

Use:     drop the tos, setting nos as the new tos

Take:    ... n

Return:  ...

Notes:   inlines to "lodsd"

--------------------------------------------------------------

nip

Use:     drop the nos

Take:    ... x y

Return:  ... y

Notes:   inlines to ""

--------------------------------------------------------------

true   false

Use:     set the value of the flag

Take:    

Return:  

Notes:   On x86 this uses the carry flag and can be used with

         ?if for conditionals.

--------------------------------------------------------------



--------------------------------------------------------------

f:   m:

Use:     Force the compiler to compile a call to a forth word

         (f:) or macro (m:).

Take:    

Return:  

Notes:   This can be useful if you need to call a macro at 

         runtime, or if you have a forth word with the same

         name as a macro.

         These words parse the input stream

Example: : foo f: bar ;    | compile a call to the forth word

                           | "bar"

         : baz m: bat ;    | compile a call to the macro named

                           | "bat" 

--------------------------------------------------------------

[']

Use:     Compile the address of a word into the definition

Take:    

Return:  

Notes:   This only searches the forth dictionary, not macros

         This is a parsing word

Example: : foo ['] words . ;

--------------------------------------------------------------

s"

Use:     Compile a string into a definition

Take:    

Return:  a #

Notes:   The string is placed in a special memory buffer and

         the address/count is stored in the definition.

         This is a parsing word.

Example: : foo s" hello, world!" type cr ;

--------------------------------------------------------------

."

Use:     Same as s" but also compiles in a call to 'type'

Take:    

Return:  

Notes:   Basically this is provided to make displaing strings

         easier. It is a parsing word.

--------------------------------------------------------------



--------------------------------------------------------------

:

Use:     Define a new entry point

Take:    

Return:  

Notes:   Define a new entry point into a definition.

         This is a parsing word

Example: : foo 1 2 : bar + 3 * ;

Notes:   In this example, foo puts 1 and then 2 onto the stack

         Execution falls through to 'bar' which adds the tos

         and nos and then multiplies by 3. Calling 'bar' by

         itself will use the values you placed on the stack.

--------------------------------------------------------------

(

Use:     Comments in definitions

Take:    

Return:  

Notes:   Allow things like stack comments. Comments are

         terminiated by a ) character.

         This is a parsing word

Example: : foo ( x -- x+2 )  2 + ;

--------------------------------------------------------------

>r

Use:     Place a value on the return stack

Take:    x

Return:  

Notes:   Drops the TOS

--------------------------------------------------------------

r>

Use:     Take the top of the return stack and place on data

         stack

Take:    

Return:  x

Notes:   Drops the TORS

--------------------------------------------------------------

r

Use:     Place a copy of the TORS on the data stack

Take:    

Return:  x

Notes:   Does not drop the TORS

--------------------------------------------------------------



--------------------------------------------------------------

repeat

Use:     Start a structured loop

Take:    

Return:  

Notes:   

--------------------------------------------------------------

again

Use:     Repeat an unconditional loop

Take:    

Return:  

Notes:   

Example: : foo 0 repeat dup . 1+ again ; 

--------------------------------------------------------------

until

Use:     Repeat a counted loop

Take:    x

Return:  x-1 (see notes)

Notes:   When x=0 the loop exits

         Decrements tos *before* comparing to 0. This means

         that if you say "0 until" an essentially infinite

         loop will result.

         The counter is the TOS

Example: : foo 10 repeat dup . 1- until cr ;

--------------------------------------------------------------

for

Use:     Start a counted loop

Take:    

Return:  

Notes:   This is the same as 'repeat >r'

--------------------------------------------------------------

next

Use:     Repeat a counted loop

Take:    

Return:  

Notes:   The counter is on the return stack, not the data

         stack.

         See the notes on 'until' for more details.

         This is the same as 'r> until'

Example: : foo 10 for r . next cr ;

--------------------------------------------------------------



--------------------------------------------------------------

=if

Use:     Conditional

Take:    x y

Return:  

Notes:   Continue execution if x and y are equal, otherwise

         skip to after 'then'

--------------------------------------------------------------

<>if

Use:     Conditional

Take:    x y

Return:  

Notes:   Continue execution if x and y are not equal, else

         skip to after 'then' 

--------------------------------------------------------------

>if

Use:     Conditional

Take:    x y

Return:  

Notes:   Continue execution if x is greater than y,

         otherwise skip to after 'then'  

--------------------------------------------------------------

<if

Use:     Conditional

Take:    x y

Return:  

Notes:   Continue execution if x is less than y,

         otherwise skip to after 'then'  

--------------------------------------------------------------

?if

Use:     Conditional

Take:    

Return:  

Notes:   Continue execution if the flag is true, otherwise

         skips to after 'then'

--------------------------------------------------------------

(if)

Use:     Conditional (not to be called directly!)

Take:    x

Return:  

Notes:   This is used to implement other conditionals.

--------------------------------------------------------------



--------------------------------------------------------------

Forth Words

--------------------------------------------------------------

swap

Use:     Swap the TOS and NOS

Take:    x y

Return:  y x

Notes:   This is also a macro

--------------------------------------------------------------

drop

Use:     Drop the TOS

Take:    ... x

Return:  ...

Notes:   This is also a macro

--------------------------------------------------------------

nip

Use:     Drop the NOS

Take:    ... x y

Return:  ... y

Notes:   This is also a macro

--------------------------------------------------------------

dup

Use:     Duplicate the TOS

Take:    x

Return:  x x

Notes:   

--------------------------------------------------------------

and

Use:     Bitwise AND

Take:    x y

Return:  z

Notes:   

--------------------------------------------------------------

or

Use:     Bitwise OR

Take:    x y

Return:  z

Notes:   

--------------------------------------------------------------



--------------------------------------------------------------

xor

Use:     Bitwise XOR

Take:    x y

Return:  z

Notes:   

--------------------------------------------------------------

not

Use:     Bitwise NOT

Take:    x

Return:  y

Notes:   

--------------------------------------------------------------

@   c@

Use:     Fetch a value 

Take:    a

Return:  n

Notes:   Fetch a cell (@) or byte (c@) from the address

         provided

--------------------------------------------------------------

!   c!

Use:     Store a value

Take:    a n

Return:  

Notes:   Store a cell (!) or byte (c!) to the provided

         address

--------------------------------------------------------------

hex

Use:     Change the base to hexadecimal

Take:    

Return:  

Notes:   Base 16

--------------------------------------------------------------

decimal

Use:     Change the base to decimal

Take:    

Return:  

Notes:   Base 10

--------------------------------------------------------------



--------------------------------------------------------------

binary

Use:     Change the base to binary

Take:    

Return:  

Notes:   Base 2

--------------------------------------------------------------

octal

Use:     Change the base to octal

Take:    

Return:  

Notes:   Base 8

--------------------------------------------------------------

+

Use:     Add TOS and NOS

Take:    x y

Return:  z

Notes:   x+y

--------------------------------------------------------------

-

Use:     Subtract NOS from TOS

Take:    x y

Return:  z

Notes:   x-y

--------------------------------------------------------------

*

Use:     Multiply TOS and NOS

Take:    x y

Return:  z

Notes:   x*y

--------------------------------------------------------------

/mod

Use:     Divide and determine remainder

Take:    x y

Return:  d r

Notes:   

--------------------------------------------------------------

/

Use:     Divide NOS by TOS

Take:    x y

Return:  z

Notes:   x/y

--------------------------------------------------------------



--------------------------------------------------------------

mod

Use:     Divide NOS by TOS and return the remainder

Take:    x y

Return:  z

Notes:   

--------------------------------------------------------------

negate

Use:     Negate the TOS

Take:    x

Return:  x

Notes:   The same as doing  -1 *

--------------------------------------------------------------

1+

Use:     Add 1 to TOS

Take:    x

Return:  x+1

Notes:   This is also a macro

--------------------------------------------------------------

1-

Use:     Subtract 1 from TOS

Take:    x

Return:  x-1

Notes:   This is also a macro

--------------------------------------------------------------

(

Use:     Comments

Take:    

Return:  

Notes:   This parses until a ) is encounted and ignores the

         parsed code.

         This is a parsing word

--------------------------------------------------------------

|

Use:     Comments

Take:    

Return:  

Notes:   This parses until the end of the line and ignores the

         parsed code. This type of comment does not work in 

         definitions

         This is a parsing word

--------------------------------------------------------------



--------------------------------------------------------------

wsparse

Use:     Parse ahead until the next whitespace

Take:    

Return:  a #

Notes:   Whitespace is either a space, tab, or EOL character

         This is a parsing word

--------------------------------------------------------------

lnparse

Use:     Parse ahead until the end of the line

Take:    

Return:  a #

Notes:   EOL can be a cr or lf character

         This is a parsing word

--------------------------------------------------------------

>>

Use:     Shift right

Take:    x y

Return:  

Notes:   

--------------------------------------------------------------

<<

Use:     Shift left

Take:    

Return:  

Notes:   

--------------------------------------------------------------

here

Use:     Return the top of the heap

Take:    

Return:  a

Notes:   h0 is a variable pointing to the top of the heap. So

         'here' is the same as doing 'h0 @'

--------------------------------------------------------------

allot

Use:     Allocate memory on the heap

Take:    x

Return:  

Notes:   Allocate X bytes of memory

--------------------------------------------------------------



--------------------------------------------------------------

cells

Use:     Convert a number of cells to the size in bytes

Take:    x

Return:  x*4

Notes:   Cells are 4 bytes (a dword on x86) in size

--------------------------------------------------------------

cell+

Use:     Increase TOS by the size of a cell

Take:    x

Return:  x+4

Notes:   Cells are 4 bytes (a dword on x86) in size

--------------------------------------------------------------

later

Use:     Delay execution of a word until the caller finishes

Take:    

Return:  

Notes:   This is tricky to learn, but very powerful

--------------------------------------------------------------

exit,

Use:     Compile an exit instruction

Take:    

Return:  

Notes:   Compiles a RET ($c3) on x86

--------------------------------------------------------------

create:

Use:     Create a new dictionary entry

Take:    

Return:  

Notes:   Does a 'wsparse entry' to create the entry

         This is a parsing word

--------------------------------------------------------------

variable

Use:     Create a variable

Take:    

Return:  

Notes:   This creates a variable with an initial value of 0

         This is a parsing word

--------------------------------------------------------------



--------------------------------------------------------------

variable:

Use:     Create a variable

Take:    x

Return:  

Notes:   This creates a variable with an initial value of 'x'

         This is a parsing word

--------------------------------------------------------------

rot

Use:     Rotate the stack

Take:    x y z

Return:  y z x

Notes:   

--------------------------------------------------------------

-rot

Use:     Rotate the stack twice

Take:    x y z

Return:  z x y

Notes:   

--------------------------------------------------------------

tuck

Use:     Tuck a copy of the TOS under the NOS

Take:    ... x y

Return:  ... y x y

Notes:   

--------------------------------------------------------------

over

Use:     Place a copy of the NOS over the TOS

Take:    ... x y

Return:  ... x y x

Notes:   

--------------------------------------------------------------

2drop

Use:     Drop the top two entries on the stack

Take:    ... x y

Return:  ...

Notes:   

--------------------------------------------------------------



--------------------------------------------------------------

2dup

Use:     Duplicate the top two entries on the stack

Take:    ... x y 

Return:  ... x y x y

Notes:   The same as doing 'over over'

--------------------------------------------------------------

'

Use:     Obtain the address of a word

Take:    

Return:  a

Notes:   This does not recognize macros

         This is a parsing word

--------------------------------------------------------------

alias

Use:     Bind an address to a name

Take:    a

Return:  

Notes:   Using this with loc: and ;loc allows localized

         fatoring

         This is a parsing word

--------------------------------------------------------------

execute

Use:     Execute the provided address

Take:    a

Return:  

Notes:   The address is passed on the stack. No validation is

         performed, so be careful when using this

--------------------------------------------------------------

literal,

Use:     Compile a literal to HERE

Take:    x

Return:  

Notes:   

--------------------------------------------------------------

0;

Use:     Exit a word if the TOS is 0

Take:    x

Return:  x (if not zero)

           (drops tos if it is 0)

Notes:   Useful in loops

--------------------------------------------------------------



--------------------------------------------------------------

list

Use:     Array holding the addresses of 'last' during a loc:

         and ;loc pairing

Take:    

Return:  a

Notes:   Not intended for use by words other than loc: and

         ;loc

--------------------------------------------------------------

loc:

Use:     Start a locally factored definition

Take:    

Return:  

Notes:   loc: is to be used with ;loc. You can nest loc: up to  

         four times.

--------------------------------------------------------------

;loc

Use:     End a locally factored definition

Take:    

Return:  

Notes:   This removes all word names between the prior loc:

         and this. The definitions are left behind.

--------------------------------------------------------------

fill

Use:     Fill memory with a specified byte

Take:    a # b

Return:  

Notes:   b is the byte to fill memory with

--------------------------------------------------------------

move

Use:     Copy a region of memory from one location to another

Take:    s d #

Return:  

Notes:   s is source, d is dest, # is the number of bytes to

         move

--------------------------------------------------------------

pad

Use:     Return the address of the PAD

Take:    

Return:  a

Notes:   Strings are initially placed in PAD

--------------------------------------------------------------



--------------------------------------------------------------

>pad

Use:     Copy a string to the PAD

Take:    a #

Return:  a #

Notes:   Destroys the original contents of PAD

--------------------------------------------------------------

"

Use:     Create a temporary string

Take:    

Return:  a #

Notes:   The string is placed in PAD using >PAD

--------------------------------------------------------------

."

Use:     Display a string

Take:    

Return:  

Notes:   The string is placed in PAD before displaying it

--------------------------------------------------------------

$,

Use:     Compile a temporary string into the current definition

Take:    addr #

Return:  

Notes:   The address and count are inlined to HERE, followed

         by a jmp over the string, and a nop at the end.

--------------------------------------------------------------

zt

Use:     Make a temporary zero-terminated string

Take:    a #

Return:  a

Notes:   This replaces zt-make and zt-free from the 7.x series

--------------------------------------------------------------

cr

Use:     Next output will be on the next line

Take:    

Return:  

Notes:   

--------------------------------------------------------------



--------------------------------------------------------------

space

Use:     Display a space

Take:    

Return:  

Notes:   

--------------------------------------------------------------

.

Use:     Display a signed number

Take:    n

Return:  

Notes:   

--------------------------------------------------------------

u.

Use:     Display an unsigned number

Take:    n

Return:  

Notes:   

--------------------------------------------------------------

words

Use:     Display all currently defined words in the current

         dictionary

Take:    

Return:  

Notes:   

--------------------------------------------------------------

ok

Use:     The interpreter loop

Take:    

Return:  

Notes:   You can customize this to provide a prompt if you

         want one.

--------------------------------------------------------------



Editor Words

--------------------------------------------------------------

blk

Use:     Variable storing the current block number

Take:    

Return:  a

Notes:   Mainly used internally

--------------------------------------------------------------

#blks

Use:     Variable storing the number of blocks to load/save

Take:    

Return:  a

Notes:   The word 'blocks' is used to set this

--------------------------------------------------------------

(block)

Use:     Return the address of the current block

Take:    

Return:  a

Notes:   The same as: blk @ block

--------------------------------------------------------------

block

Use:     Return the address of a block

Take:    n

Return:  a

Notes:   

--------------------------------------------------------------

(line)

Use:     Return the address of a line in the current block

Take:    n

Return:  a

Notes:   Used internally

--------------------------------------------------------------

p   n

Use:     Go to the next or previous block

Take:    

Return:  

Notes:   p is previous block, n is next block

--------------------------------------------------------------



--------------------------------------------------------------

d

Use:     Delete a line

Take:    n

Return:  

Notes:   

--------------------------------------------------------------

x

Use:     Delete the current block

Take:    

Return:  

Notes:   

--------------------------------------------------------------

eb

Use:     Evaluate the current block

Take:    

Return:  

Notes:   Evaluates the entire block at once

--------------------------------------------------------------

el

Use:     Evaluate a line in the current block

Take:    n

Return:  

Notes:   

--------------------------------------------------------------

e

Use:     Evaluate the current block

Take:    

Return:  

Notes:   Evaluates each line separately

--------------------------------------------------------------

ia

Use:     Insert a line at a specified column

Take:    column# line#

Return:  

Notes:   This is a parsing word.

Example: 1 4 ia Hello

--------------------------------------------------------------



--------------------------------------------------------------

i

Use:     Insert a line

Take:    line#

Return:  

Notes:   This is a parsing word

Example: 5 i Hello again

--------------------------------------------------------------

s

Use:     Select a new block

Take:    n

Return:  

Notes:   The same as doing 'blk !'

--------------------------------------------------------------

\

Use:     Evaluate the startup block

Take:    

Return:  

Notes:   The first block (0) is reserved for comments. This

         does '1 s e'. It's assumed that the loaded block will

         chainload the rest.

--------------------------------------------------------------

\f

Use:     Evaluate a loaded file

Take:    

Return:  

Notes:   This will assume that you've used "load" to load a

         file to the block buffer. It'll evaluate everything

         in the loaded file.

--------------------------------------------------------------

blocks

Use:     Set the number of blocks to load or save

Take:    n

Return:  

Notes:   The same as '#blks !'

--------------------------------------------------------------

new

Use:     Erase all of the blocks

Take:    

Return:  

Notes:   

--------------------------------------------------------------



--------------------------------------------------------------

v

Use:     View the current block

Take:    

Return:  

Notes:   Also shows the 'status' information

--------------------------------------------------------------

.s

Use:     Display the top ten items on the stack

Take:    

Return:  

Notes:   

--------------------------------------------------------------

status

Use:     Display some status information

Take:    

Return:  

Notes:   Displays the block number, and does '.s'

--------------------------------------------------------------

use

Use:     Select a new active file

Take:    

Return:  

Notes:   Not defined in the native or L4 ports

         This is a parsing word

Example: use lib/retrospect

--------------------------------------------------------------

r

Use:     Read the selected file to the block memory

Take:    

Return:  

Notes:   

--------------------------------------------------------------

w

Use:     Write the blocks to the selected file

Take:    

Return:  

Notes:   

--------------------------------------------------------------



--------------------------------------------------------------

load

Use:     Select a file and read it into memory

Take:    

Return:  

Notes:   This is a parsing word

Example: load lib/retrospect

--------------------------------------------------------------



Color and Console Words

--------------------------------------------------------------

clear

Use:     Clear the screen

Take:    

Return:  

Notes:   

--------------------------------------------------------------

home

Use:     Go to the home (upper left hand corner) of the screen

Take:    

Return:  

Notes:   

--------------------------------------------------------------

normal

Use:     Reset the display attributes to the normal setting

Take:    

Return:  

Notes:   Normal is generally white text on a black background

--------------------------------------------------------------

black   red   green   yellow   blue   magenta   cyan    white

Use:     Change the foreground color

Take:    

Return:  

Notes:   

--------------------------------------------------------------

onBlack   onRed   onGreen   onYellow   onBlue   onMagenta

onCyan    onWhite

Use:     Change the background color

Take:    

Return:  

Notes:   

--------------------------------------------------------------



System Interface Words

--------------------------------------------------------------

syscall    (Linux)

Use:     Perform a system call operation

Take:    a0 a1 ... a# # n    

Return:  n

Notes:   n is the syscall number, # is the number of arguments

         a0 through a# are the arguments to the syscall

--------------------------------------------------------------

syscall    (Dex4u)

Use:     Perform a system call operation

Take:    edi esi edx ecx ebx eax    

Return:  edi esi edx ecx ebx eax

Notes:   

--------------------------------------------------------------

from

Use:     Select a library to import from

Take:    

Return:  

Notes:   Only in the Windows and Generic+FFI ports

         This is a parsing word

Example: from kernel32.dll

         from libc.so

--------------------------------------------------------------

import

Use:     Import a "stdcall" style function

Take:    n

Return:  

Notes:   Only in the Windows and Generic+FFI ports

         This is a parsing word

Example: 10 import foobar

         | This will import a function named foobar that takes

         | 10 arguments

--------------------------------------------------------------



--------------------------------------------------------------

cimport

Use:     Import a C-style function

Take:    n

Return:  

Notes:   Only in the Windows and Generic+FFI ports

         This is a parsing word

Example: 10 cimport foobar

         | This will import a function named foobar that takes

         | 10 arguments

--------------------------------------------------------------

p1@  p2@

Use:     Read from a port

Take:    port

Return:  n

Notes:   p1@ is for bytes,  p2@ is for words

         Only in Native and L4

--------------------------------------------------------------

p1!  p2!

Use:     Write to a port

Take:    n port

Return:  

Notes:   p1! is for bytes,  p2! is for words

         Only in Native and L4

--------------------------------------------------------------



The Core

We call the assembly portion of RetroForth the core. The core is an interesting place, since it

provides the initial functionality needed to bootstrap RetroForth, yet it doesn't actually provide a

lot of inherent functionality.

The core consists of a handful of words and variables used to implement the interpreter and

compiler, but not stack manipulation, arithmetic, or even memory management. It's really a

skeleton on which a dialect of Forth can be built.

The core also encompasses a few I/O words like key, emit, type, and #, but this is only to make

life easier for those doing new ports.

Most people don't need to delve deeply into the inner workings of the core, but if you want to

modify the compiler itself, or alter some internal functionality, you should read the rest of this

section.



Dictionary Structure

We have chosen to implement a simple dictionary structure for RetroForth. Basically there are

two linked lists; one for each dictionary. Each entry looks like this (in assembly):

dd link_to_previous_entry

dd address_of_word

db length_of_the_name

db 'the_name_itself'

The first entry in the dictionary has a link to the address 0 in the first field. This is used to signify

the end of the dictionary. We provide a meta-variable named last which provides a pointer to the

most recent entry.

What if you want to get at the first entry? Define a word that walks back through the dictionary

and returns the address of the first entry. Something like this can work:

: first last repeat dup @ 0; nip again ;



Memory Layout

RetroForth has a pretty simple memory layout. It's divided into five sections:

Kernel (About 2-3 K)

TIB (1 K)

Dictionary (256 K)

Heap (1 M)

Block Buffer (128 K)

The kernel contains the barebones compiler and the initial bootstrap code. The other sections are

mentioned in the terminology section. The memory in TIB and beyond is considered ok to mess

with. (We recommend not directly modifying the kernel portion unless you're very familiar with

RetroForth's internals)

To get at each of these areas we provide a number of words:

tib   Returns the address of the tib

last  Returns the address of the most recent dictionary entry

h0    Variable pointing to the top of the heap

here  Returns the address of top of the heap

there Returns the address of the block buffer

Those are the provided words for accessing these areas

To get to a specific section, just add the offsets starting with ‘tib’

: dictionary [ tib 1024 + ] literal ;

: heap [ dictionary $40000 + ] literal ;

There are some dictionary headers outside the dictionary region, but these are defined in the

assembly source. It is possible to get access to them by walking through the dictionary.



Assembler Macros

There are quite a few macros that we use in the assembly part of the source. Several of these are

used for readability reasons. A few are used to build the initial dictionaries. If you intend to work

on the core you need to understand these.

upsh Push a value to the data stack

upop Pop a value from the data stack

drop Drop the TOS

dup Duplicate the TOS

code Add a new Forth word

mcode Add a new compiler macro

next End a definition

var Add a new variable

inline Inline some bytes

fdef Creates a Forth-vocabulary dictionary for a colon entry (new as of 8.0)

mdef Creates a Macro-vocabulary dictionary for a colon entry (new as of 8.0)

vdef Creates a Forth-vocabulary dictionary for a variable (new as of 8.0)

upsh and upop

Use upsh and upop to place or obtain the values of memory locations, registers, and integer

values on the stack. dup and drop are like the Forth primitives.

var, code, and mcode

Using code and mcode is slightly more difficult:

code 'forthname', assemblyname

mcode 'forthname', assemblyname

var 'forthname', assemblyname, value

Use next in place of RET for readability.



fdef, mdef, and vdef

As of RetroForth 8.0, word headers are no longer kept in the same code space as the definition

contents. Therefore, when coding new assembly language primitives, it is not sufficient to just

use var, code, or mcode macros. You must also update the core.dict file with corresponding fdef,

mdef, or vdef macro invocations, to provide the proper dictionary linkage. The syntax for each is

as follows:

fdef 'forthname', assemblyname

mdef 'forthname', assemblyname

vdef 'forthname', assemblyname



Bootstrapping

RetroForth's bootstrap process is a bit different than in most Forths. We define a small core

kernel containing the basic compiler and a few I/O words. Everything else is built from source

code upon startup. This source code is included directly into the binary. This allows the binaries

to be self-contained easily.

The source code is generally placed in a file named core.f before inclusion into the core. The

build process regenerates this from several smaller files in the source/blocks directory.

These smaller files are what define the RetroForth language and environment. Let's take a quick

look at them:

base Contains the RetroForth language (required)

welcome Displays a nice welcome message (optional)

colors Support for foreground/background colors (optional)

red The editor (optional, needs colors)

red-view The view portion of the editor (optional, needs red)

blockio Load and save blocks (optional, needs red)

edit The editor UI (optional, needs red-view)

The only one required is base. The default system includes the others as they provide a lot of

useful functionality in terms of making RetroForth a useable development environment.

Note: the source blocks need to leave the address of the custom interpreter on the stack. The

default base provides this.



Ports

For the first five years of development, RetroForth was a purely Native forth. This changed

during the development of the Release 6 codebase, when Tom Novelli ported it to Linux. Since

then it’s been ported to numerous other operating systems.

During the development of Release 7, we decided to allow some interaction with the host OS.

This is provided in various ways. Under Linux, FreeBSD, and Dex4u you can use system calls,

and under Windows and Generic+FFI you can use external libraries. On both the Native and L4

ports, you can directly access the hardware. Further details are provided in the Glossary section.

In addition to this, there are various dependencies when building. The next few pages in this

handbook are dedicated to explaining the installation and build process for each of the ports.

Please note that you can rebuild the source for Linux, FreeBSD, and Windows by using fasm on

the rf.asm file in the source directory. For the other ports, use the methods described below.



Linux

To get started, run the rf binary in the bin subdirectory. In many cases, doing the following at a

shell will work:

./bin/rf

Adjust the path as needed. If you like RetroForth, we recommend keeping a copy in your ~/bin

directory or somewhere else in your path.

Building a custom version

Requirements:

• The source code (included with all copies of RetroForth)

• FASM (from http://www.flatassembler.net)

• GNU make (The BSD make might work, but this has not been tested)

To build:

• Edit the "Makefile" as neccessary

• Run "make" at a command line

• Test the newly generated binary

If you didn't modify the makefile, the binary will be in the bin subdirectory. It will be named rf

by default.



FreeBSD

To get started, run the rf binary in the bin subdirectory. In many cases, doing the following at a

shell will work:

./bin/rf

Adjust the path as needed. If you like RetroForth, we recommend keeping a copy in your ~/bin

directory or somewhere else in your path.

Building a custom version

Requirements:

• The source code (included with all copies of RetroForth)

• FASM (from http://www.flatassembler.net)

• GNU make (The BSD make might work, but this has not been tested)

• Linux emulation (to allow use of FASM)

To build:

• Edit the Makefile as neccessary

• Run make at a command line

• Do brandelf -t FreeBSD bin/rf   (adjust the path as needed)

• Test the newly generated binary

If you didn't modify the makefile, the binary will be in the bin subdirectory. It will be named rf

by default.



Windows

To get started, run the rf.exe binary in the bin subdirectory. One way to do this is to double click

on the bin directory and then to double click on the rf.exe file that appears. If you like

RetroForth, we recommend keeping a copy somewhere that you can run it easily.

Building a custom version

Requirements:

• The source code (included with all copies of RetroForth)

• FASM (from http://www.flatassembler.net)

• GNU make is recommended, but not required

To build:

• Edit the Makefile or build.bat as neccessary

• Run make or build.bat at a command line

• Test the newly generated binary

If you didn't modify the makefile or build.bat, the binary will be in the bin subdirectory. It will

be named rf.exe by default.



Generic

To get started, run the rf binary in the bin subdirectory. If you are using Linux, doing the

following at a shell should work:

./bin/rf

Adjust the path as needed. If you like RetroForth, we recommend keeping a copy in your ~/bin

directory or somewhere else in your path.

Building a custom version

Requirements:

• The source code (included with all copies of RetroForth)

• FASM (from http://www.flatassembler.net)

• GNU make (The BSD make might work, but this has not been tested)

• GCC (or another C compiler with ELF support)

To build:

• Edit the Makefile as neccessary

• Run make at a command line

• Test the newly generated binary

If you didn't modify the makefile, the binary will be in the bin subdirectory. It will be named rf

by default.



Generic + FFI

To get started, run the rf binary in the bin subdirectory. If you are using Linux, doing the

following at a shell should work:

./bin/rf

Adjust the path as needed. If you like RetroForth, we recommend keeping a copy in your ~/bin

directory or somewhere else in your path.

Building a custom version

Requirements:

• The source code (included with all copies of RetroForth)

• FASM (from http://www.flatassembler.net)

• GNU make (The BSD make might work, but this has not been tested)

• GCC (or another C compiler with ELF support)

• A copy of libdl.so

To build:

• Edit the Makefile as neccessary

• Run make at a command line

• Test the newly generated binary

If you didn't modify the makefile, the binary will be in the bin subdirectory. It will be named rf

by default.



Dex4u

To get started, put the rf.dex binary (from the bin subdirectory) on a floppy or CD. At the Dex4u

shell, do:

a:

run rf.dex

Building a custom version

Requirements:

• The source code (included with all copies of RetroForth)

• FASM (from http://www.flatassembler.net)

• GNU make is recommended

To build:

• Edit the Makefile as neccessary

• Run make at a command line

• Test the newly generated binary

If you didn't modify the makefile, the binary will be in the bin subdirectory. It will be named

rf.dex by default.



Native

Installation of the Native system is fairly straightforward. In the bin directory there is a file

named diskimage. You will need to write this to a floppy. Under Linux or FreeBSD it can be

done by:
dd if=bin/diskimage of=/dev/fd0

Under Windows, use RaWriteWin or a similar tool. Once this is done, you can boot it. The

diskimage can also be used with emulators like Bochs and Qemu.

Building a custom version

Requirements:

• The source code (included with all copies of RetroForth)

• FASM (from http://www.flatassembler.net)

• GNU make is recommended

To build:

• Edit the Makefile as neccessary

• Run make at a command line

• Make a boot floppy and test

If you didn't modify the makefile, the new diskimage will be in the bin subdirectory. It will be

named diskimage by default.



L4Ka::Pistachio

This port has the most complex installation process. (Once you set up a boot disk, updating it is

easy though)

To build yourself the bootdisk, this is what I did.  The steps you'll need to take will depend on

how your L4Ka installation is set up, so I just used macro-like string substitutions.  You're smart

enough to figure that out, though, right?

    # dd if=/dev/zero of=boot.disk bs=1024 count=1440

    # mkfs -t ext2 boot.disk

    # mkdir img

    # mount -o loop boot.disk img

    # mkdir img/boot

    # cp $GRUB_LIBS/stage1 img/boot

    # cp $GRUB_LIBS/e2fs_stage_1_5 img/boot

    # cp $GRUB_LIBS/stage2 img/boot

    # cp $L4HOME/ia32-kernel img/boot

    # cp $L4HOME/kickstart img/boot

    # cp $L4HOME/sigma0 img/boot

Now follow the steps required by GRUB to make the boot floppy truly bootable. Later updates

simply require copying the bin/rf8.kapp

We will be providing a ready-made diskimage in the future, so this process will become

somewhat simpler then.

Building a custom version

Requirements:

• The source code (included with all copies of RetroForth)

• FASM (from http://www.flatassembler.net)

• GNU make (The BSD make might work, but this has not been tested)

• GCC

To build:

• Edit the Makefile as neccessary

• Run make at a command line

• Copy the newly generated binary to your boot disk and test

If you didn't modify the makefile, the binary will be in the bin subdirectory. It will be named

rf8.kapp by default.



The Editor

The editor (called RetroEditor or RED) plays a big role in RetroForth. It's the primary tool for

editing blockfiles in the library, and allows a clean, easy to learn way to save and edit code

within the RetroForth environment.

This editor is not new. It's been around since the days of RetroForth 4, but never has it been this

closely integrated into RetroForth as a whole. It will take you a bit of practice to become

proficient at editing since RED is line-oriented.

Blocks in RetroForth are 512 bytes. This gives you 8 lines with 64 characters per line. In most

Forths blocks are 1024 bytes. We have some reasons for shorter blocks (for starters they seem to

encourage better factoring; for another they map directly to physical sectors in the Native and L4

versions).

So let's take a look at it, and see how to actually use it.



The Interface

Let's start by examining a screenshot of the interface.

This shows the main user interface. There are two horizontal lines, broken by special symbols

every four columns. Between them are eight lines, numbered 0 through 7. Below this is a line

showing the current block number, and the current stack contents.

Line numbers are in red; they show which line in the block that the code is on. The code itself is

shown in greeen, as is the status information below the block. The horizontal column bars are in

grey.

What you type appears below the status bar. You can use any forth code in the input area; the

output is displayed below your input line. This allows interactive coding and debugging while

editing.

You start the editor simply by running edit. The word exit will quit the editor and return you to

normal forth. Now that you have some idea as to what's being shown, let's take a look at how to

load and save your code.



We provide several words for selecting, opening, and saving blockfiles. The first of these is use.

You can specify a filename to load or save this way easily. Simply do:

use <filename>

And <filename> will become the active file. When you use r (read) or w (write), the contents

of the block buffer will be written to this file. To make selecting and loading files easier, we

provide a word named load. Use it like:

load <filename>

Then <filename> will be selected and read into the block buffer. Please note that doing load,

r, or w will create the file if it does not exist.

The final word we will cover here is blocks. This word specifies the number of blocks to read

or write. You can use it like:

12 blocks

The minimum number of blocks is 1; the maximum is 256.

Navigating

It's easy to navigate through the blocks once they're loaded. We provide a grand total of three

words for this activity.

To go to the next block, run n. To select the previous block, use p. And finally, to select a

specific block you can use s. The word s takes the block number from the stack.



Editing

Now that you finally know how to start the editor, select a blockfile, and choose the block you'd

like to edit, how can you get your code into it? Relax, it's not that hard.

You can use the words i and ia to insert/overwrite text. These are used like:

| Put the words "Hello World" on line 3, starting 

| at column 0

3 i Hello World

| Put the words "Hello, World" on line 6, starting 

| at column 10

9 6 ia Hello, World

Note that both line and column numbers start at 0.

You can delete a line using d, or the entire block using x. If you need to erase all of the blocks,

use new. Examples:

| Delete line 3

3 d

| Delete everything in this block

x

| Delete all of the blocks

new

These form the core of the editing experience. It's also important to review how to actually run

code in the blocks. We provide three words for this.

| evaluate a specific line

4 el

| evaluate the entire block (as a single line)

eb

| evaluate the entire block, one line at a time

e

The preferred way to evaluate a block is to use e. If you need to evaluate several blocks, chain

them by doing: n e at the end of each block.

Note: it is recommended that you start the actual code in block 1 and use block 0 for comments

about the blockfile. If you do this you can use \ when loading a blockfile to evaluate it

automatically. If you load a normal file, you can use \f to evaluate it.



The Library

A very important part of RetroForth is the code library. This is a collection of applications and

extensions that can be quickly loaded. The following block files make up the library:

allegro  Bindings for the Allegro graphics library

assembler Albert van der Horst’s  386 assembler

ans      Some words from the DPANS CORE and CORE EXT specs

editor Some extensions to the retroeditor

linux Symbolic names for the Linux system calls and some related words for

using retroforth as a shell

math Enhanced math support

marker mark/empty

memory Dynamic memory allocation for Windows and Linux

retrospect A debugger

strings Enhanced string support

sockets Basic socket I/O words for Linux

wikicore A wiki markup to html convertor

 



Retrospect, a debugger

Retrospect is a debugger for RetroForth. It provides a number of useful services such as hex

dumps, disassembler, assembler, and basic profiling of code.

Generally you can load it by doing:

load lib/retrospect \

Of course, you may need to adjust the path to the blockfile, depending on how you have things

set up.



Hex Dumps

The ability to look into a buffer or examine a region of memory is often helpful. With

Retrospect, this is provided by dump.

' words 42 dump
4242f4 | E8 BC D4 FD FF E8 4A FA FF FF E8 B5 FD FF FF E8 | ......J.........

424304 | 19 FA FF FF E8 77 D2 FD FF 09 00 00 00 E8 A2 FA | .....w..........
424314 | FF FF E8 06 FA FF FF 48 E8 31 | .......H.1

This format shows the address on the left, the hex values (16 per row) in the middle, and the

ASCII symbols on the right.

dump ( address count -- ) 



Disassembler

Many times you'll want to take a peek at an earlier definition. Rather than searching through

numerous blocks for a definition, or trying to recall that quick one-liner you wrote, you can use

the word inspect to see the compiled code in a human-readable form.

Try this:

inspect words

You'll see some output like:

words:

4242f4: call 4017b5  ; last

4242f9: call 423d48  ; @

4242fe: call 4240b8  ; 0;

424303: call 423d21  ; dup

424308: call 401584  ; literal

42430d: dd 9         ; 9

424311: call 423db8  ; +

424316: call 423d21  ; dup

42431b: dec eax      ; 1-

42431c: call 423d52  ; c@

424321: call 4010a5  ; type

424326: call 4242b4  ; space

42432b: jmp 4242f9

In the first column are the addresses of each decompiled element. The assembly operation is

next, and then on the right is the Forth version. The colors in the Forth section are for readability.

Word names are in green, numbers in brownish-yellow, and macros are in blue.

Note: inspect is mainly intended for use with normal colon definitions. You can inspect words in

the kernel, but don't expect the results to be very readable (at least at this point. We may expand

the number of supported instructions in the future.)



Profiling Your Code

Sometimes you will want to optimize your code for size or performance. Retrospect can help

here as well with its profiling tools. There are two ways to profile your code: for size and for

performance.

profile.size <code to compile>

profile.speed <code to compile>

The size or number of clock cycles used will be reported. 



A Tutorial For New Programmers

The intent of this tutorial is to provide a brief introduction to the core concepts of Forth as

implemented in RetroForth. It is only a starting point. Feel free to deviate from the sequences I

provide. A free form investigation that is based on your curiosity is probably the best way to

learn any language. Forth is especially well adapted to this type of learning.

In the tutorials, I will print the things you need to type in monospaced font, and indent them.

RetroForth is case-sensitive, unlike some other Forths; so the words which are built-in must be

entered as shown, but words you create can be any combination of case you prefer.

At the end of each line, press the RETURN (or ENTER) key; this causes RetroForth to interpret

what you've entered. You might also note that RetroForth doesn't prompt you with ok like most

other Forths do.



Forth Syntax

Most of the Forth language has a very simple syntax of any computer language. Basically you

have two things: words and numbers. There are also two modes of operation. Most of the time

you'll be in an interpreter, but you can use the compiler to create new words as well.

Most words take their data from the stack (which is where numbers are placed when they are

encountered), but you will also encounter some parsing words which take data from the input

stream. (The details of this will be covered later)

Note: there is also a special class of words known as macros. These can only be used when

defining new words, so we won't worry about them now. We'll take a closer look at them later in

this tutorial.

Words are executed in the order they appear in the code. The following statement, for example,

could appear in a Forth program:

WAKE.UP EAT.BREAKFAST WORK EAT.DINNER PLAY SLEEP

Notice that WAKE.UP has a dot between the WAKE and UP. The dot has no particular meaning

to the Forth compiler. I simply used a dot to connect the two words together to make one word,

and to make that word easier for a human to read. Forth word's names can use any combination

of letters, numbers, or punctuation. We will encounter words with names like:

." #s swap ! @ dup . *

These are all called words. The word $%%-GL7OP is a legal Forth name, although not a very

good one. It is up to the programmer to name words in a sensible manner. In general, Forth (and

RetroForth in particular) give the programmer ultimate freedom to make whatever design

decisions are appropriate, and does not get in the way of making bad decisions.

Now it is time to start RetroForth and begin experimenting. One of Forth's greatest strengths is

its interactive, immediate nature.



The Stack

The Forth language is based on the concept of a stack. Imagine a stack of blocks with numbers

on them. You can add or remove numbers from the top of the stack. You can also rearrange the

order of the numbers. Forth uses two stacks.

The data stack is the one used for passing data between Forth words so we will concentrate our

attention there. The return stack is another Forth stack that is primarily for internal system use

but is often used to store temporary values. In this tutorial, when we refer to the stack, we will be

referring to the data stack. For reference, we'll call the return stack RS.

The stack is initially empty. Start up RetroForth, and notice you are greeted by something like:

RetroForth 8.0 :: Visit http://www.retroforth.org for updates

The interpreter is now awaiting your command. Let's start by putting some numbers on the stack.

Type in:

23 7 9182

Excellent! Now print the number on top of the stack using the Forth word ., which is

pronounced dot. This is a hard word to write about in a manual because it is just a single period.

Enter:

.

You should see the last number you entered, 9182, printed. RetroForth has a very handy word

for showing you what's on the stack. It is .s, which is pronounced dot S. The name was

constructed from dot for print, and S for stack. If you enter:

.s

You will see the numbers 0 0 0 0 0 0 0 0 23 7, in a list. The number at the far right is

the one on top of the stack. The word .s displays the top ten entries on the stack, so if you have

fewer values, the number 0 will be showed instead. Notice that 9182 is not on the stack. The

word . removes the number on top of the stack before printing it. In contrast, .s leaves the stack

untouched.

Forth uses the stack to hold data being operated on, and it uses the stack to pass data from word

to word. Essentially, a word takes whatever it needs from the stack, and puts whatever its results

are on the stack. This is a very powerful aspect of Forth, but one which requires practice to

understand. It also means that documenting what each word does to the stack is important and

useful.



The standard technique for documenting the effect words have on the stack is by means of a

stack diagram. Stack diagrams begin with a left-parenthesis, contain the stack-effect diagram,

and end with a right-parenthesis. In Forth, parentheses indicate a comment, and everything

between them is ignored. So while you could put whatever you like between parentheses and

treat them as ordinary comments, the usual use of parentheses is for stack-comments. For

example, the stack-digram for the word 'dot' which we used before, would be:

. ( n -- )

That is to say, . takes one word off the stack (the n) and puts nothing on the stack. In other

words, it consumes the top stack item (hereafter called TOS).

In the examples that follow, you should not type in the comments. When you are programming,

of course, use of comments and stack diagrams may make your code more readable and

maintainable. Besides the parenthesis, you may use the vertical-bar character | as comment to

end-of-line. In other words, anything after the | on that line is ignored:

dup swap    | This is all a comment

Note: | comments are not supported in definitions, use the ( ) form instead.

Between examples, you may wish to clear the stack. If you enter reset, the stack will be

cleared. Since the stack is central to Forth, it is important to be able to alter it easily. Let's look at

some more words that manipulate the stack. Enter:

777 dup .s

You will notice that there are two copies of 777 on the stack. The word dup duplicates TOS.

This is useful when you want to use the TOS and still have a copy. The stack diagram for dup

would be:

dup ( n -- n n )

Another useful word is swap. Enter:

23 7 .s

swap .s

The stack should have 7 23 now. The stack diagram for swap would be:

swap ( a b -- b a )

Now enter:

over .s



You should see 23 7 23. The word over causes a copy of the second item on the stack to

leapfrog over the first. Its stack diagram would be:

over ( a b -- a b a )

Here is another commonly used Forth word:

drop ( a -- )

Can you guess what we will see if we enter:

drop .s

Another handy word for manipulating the stack is rot. Enter:

11 22 33 44 .s

rot .s

The stack diagram for rot is, therefore:

rot ( a b c -- b c a )

You have now learned the more important stack manipulation words. You will see these in

almost every Forth program. I should caution you that if you see too many stack manipulation

words being used in your code then you may want to reexamine and perhaps reorganize your

code. You will often find that you can avoid excessive stack manipulations by using variables,

which will be discussed later. It is also likely that factoring your code -- that is, breaking it into

smaller words -- may help reduce the stack juggling.

I have included the stack diagrams for some other useful stack manipulation words. Try

experimenting with them by putting numbers on the stack and calling them to get a feel for what

they do. Again, the text in parentheses is just a comment and need not be entered.

2drop ( a b c -- a )

2dup  ( a b   -- a b a b )

nip   ( a b c -- a c )

tuck  ( a b   -- b a b )

-rot  ( a b c -- c a b )



Arithmetic

Simply moving numbers around on a stack can be a lot of fun. Eventually, however, you'll want

to do something useful with them. This section describes how to perform arithmetic operations in

Forth.

The Forth arithmetic operators work on the numbers currently on top of the stack. If you want to

add the top two numbers together, use the Forth word +, pronounced plus. Enter:

2 3 + .

2 3 + 10 + .

This style of expressing arithmetic operations is called Reverse Polish Notation, or RPN. It will

already be familiar to those of you with HP calculators. In the following examples, I have put the

algebraic equivalent representation in a comment.

Some other arithmetic operators are - * /. Enter:

30 5 - .      | 25=30-5

30 5 / .      | 6=30/5

30 5 * .      | 150=30*5

30 5 + 7 / .  | 5=(30+5)/7

One thing that you should be aware of is that when you are doing division with integers using /,

the remainder is lost. Enter:

15 5 / .

17 5 / .

This is true in all languages on all computers. When you need to know the remainder of a divide

operation. /mod will return the remainder as well as the quotient, whereas mod will only return

the remainder. Enter:

53 10 /mod .s

7 5 mod .s

Some other math words to try out:

negate ( a -- -a )

<< ( a n -- (a<<n) ) | Shift bits left

>> ( a n -- (a>>n) ) | Shift bits right



Converting Algebraic Expressions to Forth

How do we express complex algebraic expressions in Forth? For example: 20 + (3 * 4)?

To convert this to Forth you must order the operations in the order of evaluation. In Forth,

therefore, this would look like:

3 4 * 20 +

Evaluation proceeds from left to right in Forth so there is no ambiguity. Compare the following

algebraic expressions and their Forth equivalents: (Do not enter these!)

(100+50)/2        ==> 100 50 + 2 /

((2*7) + (13*5))  ==> 2 7 * 13 5 * +

If any of these expressions puzzle you, try entering them one word at a time, while viewing the

stack with .s



Defining Words

It's now time to write a small program in Forth. You can do this by defining a new word that is a

combination of words we have already learned. Let's define and test a new word that takes the

average of two numbers.

We will make use of two new words, : (colon), and ; (semicolon). These words start and end a

typical Forth definition. Enter:

: AVERAGE ( a b -- avg ) + 2 / ;

Congratulations! You have just written a Forth program. Let's look more closely at what just

happened. The colon told Forth to add a new word to its list of words. This list is called the Forth

dictionary. The name of the new word will be whatever name follows the colon. Any Forth

words entered after the name will be compiled into the new word. This continues until the

semicolon is reached which finishes the definition.

Let's test this word by entering:

10 20 AVERAGE .   | should print 15

Once a word has been defined, it can be used to define more words. Let's write a word that tests

our word. Enter:

: TEST ( -- ) 50 60 AVERAGE . ;

TEST

Try combining some of the words you have learned into new Forth definitions of your choice. If

you promise not to be overwhelmed, you can get a list of the words that are available for

programming by entering:

words

Don't worry, only a small fraction of these will be used directly in your programs.



Character I/O

Because Forth is not a typed language, the numbers on top of the stack can represent anything.

The top number might be how many blue whales are left on Earth or your weight in kilograms. It

might also be an ASCII character. Try entering the following:

72 emit 105 emit

You should see the word "Hi" appear. 72 is an ASCII H and 105 is an i. The word emit takes a

number on the stack and outputs it as a character. To get the ASCII value of a character, prepend

the character with a single-quote. Enter:

'W .

'% dup . emit

'A dup .

32 + emit

The use of the single-quote character is a bit unusual. It tells the RetroForth interpreter that the

character that follows should be converted to the ASCII code representing it, rather than being

considered a word. There are other such modifiers in RetroForth which can make inputting

numbers simpler:

'a     | Gives 97, the ASCII value of 'a'

%1100  | Gives 12, or 1100 binary

$ff    | 255, or hexadecimal FF

&010   | 8, or octal 10

#123   | 123 - decimal 123

Using emit to output character strings would be very tedious. Luckily there is a better way.

Enter:

: TOFU ." Yummy bean curd!" ;

TOFU

The word .", pronounced dot quote, will take everything up to the next quotation mark and print

it to the screen. Make sure you leave a space after the first quotation mark. When you want to

have text begin on a new line, you can issue a carriage return using the word cr. Enter:

: SPROUTS ." Miniature vegetables." ;

: MENU cr TOFU cr SPROUTS cr ;

MENU



You can emit a blank space with space. In other Forths one may output more than one space

with the word spaces. Let's write one for RetroForth:

: spaces repeat space until ;

TOFU SPROUTS

TOFU space SPROUTS

cr 10 spaces TOFU cr 20 spaces SPROUTS

Notice that the new word we created, spaces, uses a loop construct. The word repeat starts a

series of words which will be run repeatedly. The word until subtracts one from TOS; if it's not

zero then it jumps back to just after the repeat. We'll see more of these kinds of words later on.

For character input, Forth uses the word key which corresponds to the word emit for output. key

waits for the user to press a key then leaves its value on the stack. Try the following.

: TESTKEY ( -- )

  ." Hit a key: " key cr

  ." The ASCII value = " . cr

;

TESTKEY

Note: On some computers, the input is buffered so you will need to hit the ENTER key after

typing your character.



Text I/O

You learned earlier how to do single character I/O. This section concentrates on using strings of

characters. RetroForth has several varieties of strings, and it is good to know when to use each

type.

The "normal" string is a Forth string, consisting of an address, count pair. That is, it is

represented on the stack by an address which points to the start of the character data, and a count

of characters. In stack diagrams it is often listed as ( a # -- ). To create such a string, you

may use a double-quote character, ". That word parses until it finds another double-quote, and

then it puts the address and count on the stack. Inside a colon-definition, a special version called

s" should be used instead.

" This is a string" type cr

: STR s" Hi there!" ;

STR type cr

The word type prints out the Forth string on top of the stack.

The second type of string supported by RetroForth is the ASCIIZ or zero-terminated string. That

is, a string which is terminated by a NUL byte (the ASCII value 0). These are the native strings

for C, and both Windows and Linux API functions expect such strings. Use the word zt to

temporarily convert a Forth string to an ASCIIZ string.

" RetroForth rocks!" zt    | Make an ASCIIZ string



Variables

Forth does not rely as heavily on the use of variables as other compiled languages. This is

because values normally reside on the stack. There are situations, of course, where variables are

required. To create a variable, use the word variable as follows:

variable MY-VAR

This created a variable named MY-VAR. A space in memory is now reserved to hold its 32-bit

value. The word variable is what's known as a defining word since it creates new words in the

dictionary. Now enter:

MY-VAR .

The number you see is the address, or location, of the memory that was reserved for MY-VAR.

To store data into memory you use the word !, pronounced store. It looks like an exclamation

point, but to a Forth programmer it is the way to write 32-bit data to memory. To read the value

contained in memory at a given address, use the Forth word @, pronounced fetch. Try entering

the following:

513 MY-VAR !

MY-VAR @ .

This sets the variable MY-VAR to 513, then reads the value back and prints it. You can also

create a variable and set its value at the same time:

513 variable: MY-VAR2

MY-VAR2 @ .

The stack diagrams for these words follows:

@ ( addr -- val )

! ( val addr -- )

variable  ( [name] -- )

variable: ( val [name] -- )



Imagine you are writing a game and you want to keep track of the highest score. You could keep

the highest score in a variable. When you reported a new score, you could check it against the

highest score. Try entering this code:

variable HIGH-SCORE

: max ( a b -- c ) 2dup <if nip ;; then drop ;

: REPORT.SCORE ( score -- )

  dup cr ." Your Score = " . cr

  HIGH-SCORE @ max ( calculate new high )

  dup ." Highest Score = " . cr

  HIGH-SCORE ! ( update variable )

;

Save the file to disk, then load this code using the word load. Test your word as follows:

123  REPORT.SCORE

9845 REPORT.SCORE

534  REPORT.SCORE

The Forth words @ and ! work on 32-bit quantities. c@ and c! work on characters which are

usually for 8-bit bytes. The c stands for character since ASCII characters are 8-bit numbers.

A word of warning about fetching and storing to memory: You have now learned enough about

Forth to be dangerous. The operation of a computer is based on having the right numbers in the

right place in memory. You now know how to write new numbers to any place in memory. Since

an address is just a number, you could, but shouldn't, enter:

73 253000 ! ( Do NOT do this. )

The 253000 would be treated as an address and you would set that memory location to 73. I

have no idea what will happen after that, maybe nothing. This would be like firing a rifle through

the walls of your apartment building. You don't know who or what you are going to hit. Since

you share memory with other programs including the operating system, you could easily cause

the computer to behave strangely, even crash. Don't let this bother you too much, however.

Crashing a computer, unlike crashing a car, does not hurt the computer. You just have to reboot.

The worst that could happen is that if you crash while the computer is writing to a disk, you

could lose a file. That's why we make backups. This same potential problem exists in any

powerful language, not just Forth. This might be less likely in BASIC, however, because BASIC

protects you from a lot of things, including the danger of writing powerful programs.



Constants

If you have a number that is appearing often in your program, it's recommended you define it as

a constant. We do this just like defining a word. Enter:

: MAX_CHARS 128 ;

MAX_CHARS .

We just defined a word called MAX_CHARS that returns a specific value. It cannot be directly

changed unless you edit the program and recompile. Using constants can improve the readability

of your programs and reduce some bugs. Imagine if you refer to the number 128 very often in

your program, say 8 times. Then you decide to change this number to 256. If you globally

change 128 to 256 you might change something you didn't intend. If you change it by hand you

might miss one, especially if your program occupies more than one file. Using constant will

make it easy to change. The code that results is equally as fast and small as putting the numbers

in directly. I recommend defining a constant for almost any number used more than two or three

times.



Loops

We've mentioned one of the looping constructs before. Now we'll examine them more closely.

RetroForth has a completely different set of loop constructs than ANS Forth, so you'll want to

pay attention.

Most loops begin with the word repeat. The first kind of loop is between repeat ...

until. This is a simple counted loop that exits when the TOS is zero. If it's not zero, it subtracts

one from it and loops back to repeat. Try this:

: COUNTDOWN ( N -- ) repeat dup . cr until ;

16 COUNTDOWN

This word will count down from N to zero. The second type of loop RetroForth has is an

unconditional loop, repeat ... again. This keeps going until you break out of it, perhaps

by using ;; or pressing Ctrl-C :

: MAIN-LOOP repeat ." looping again ..." cr again ;

Consider the following word for doing character graphics. Enter:

: PLOT# ( n -- ) repeat '- emit until ;

cr 9 PLOT# 37 PLOT#

RetroForth also has a for ... next construct similar to ANS Forth. It is used like this:

: looper 10 for ." Iteration #" r . cr next ;

for ... next puts the counter on the return stack. You can use the word r to obtain this value. Like

repeat ... until it counts down to zero.



Conditionals

This section is concerned with decision making. How can your program react to values on the

stack and decide how to manipulate them?

Most Forths provide a few conditionals and a word named if to handle this. However, in

RetroForth, the conditionals are bound to if. RetroForth therefore has special forms of if, which

are used directly with a condition. In California, the drinking age for alcohol is 21. You could

write a simple word now to help bartenders. Enter:

: DRINK? 20 >if ." OK" cr ;; then ." Underage!" cr ;

20 DRINK?

21 DRINK?

43 DRINK?

Here you are introduced to the if/;;/then structure of RetroForth’s conditional statements.

The word ;; is used to force an exit to a word. It's useful in both conditional constructs and

looping constructs. Other useful "if" constructs are:

<if    If second stack item is less than TOS

=if    Two top stack items are equal

<>if   Top two stack items are not equal

?if    Is the conditional flag TRUE?

true   Set the conditional flag to TRUE

false  Set the conditional flag to FALSE

;;     Exit the current word

0;     Exit if TOS=0, otherwise continue execution


